Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Short-period Galactic white dwarf binaries detectable by Laser Interferometer Space Antenna are the only guaranteed persistent sources for multimessenger gravitational-wave astronomy. Large-scale surveys in the 2020s present an opportunity to conduct preparatory science campaigns to maximize the science yield from future multimessenger targets. The Nancy Grace Roman Space Telescope Galactic Bulge Time-Domain Survey will (in its Reference Survey design) image seven fields in the Galactic Bulge approximately 40 000 times each. Although the Reference Survey cadence is optimized for detecting exoplanets via microlensing, it is also capable of detecting short-period white dwarf binaries. In this paper, we present forecasts for the number of detached short-period binaries the Roman Galactic Bulge Time-Domain Survey will discover and the implications for the design of electromagnetic surveys. Although population models are highly uncertain, we find a high probability that the baseline survey will detect of the order of ∼5 detached white dwarf binaries. The Reference Survey would also have a $${\gtrsim} 20\,{\rm per\,cent}$$ chance of detecting several known benchmark white dwarf binaries at the distance of the Galactic Bulge.more » « less
-
null (Ed.)Point-spread function (PSF) estimation in spatially undersampled images is challenging because large pixels average fine-scale spatial information. This is problematic when fine-resolution details are necessary, as in optimal photometry where knowledge of the illumination pattern beyond the native spatial resolution of the image may be required. Here, we introduce a method of PSF reconstruction where point sources are artificially sampled beyond the native resolution of an image and combined together via stacking to return a finely sampled estimate of the PSF. This estimate is then deconvolved from the pixel-gridding function to return a superresolution kernel that can be used for optimally weighted photometry. We benchmark against the <1% photometric error requirement of the upcoming SPHEREx mission to assess performance in a concrete example. We find that standard methods like Richardson–Lucy deconvolution are not sufficient to achieve this stringent requirement. We investigate a more advanced method with significant heritage in image analysis called iterative back-projection (IBP) and demonstrate it using idealized Gaussian cases and simulated SPHEREx images. In testing this method on real images recorded by the LORRI instrument on New Horizons, we are able to identify systematic pointing drift. Our IBP-derived PSF kernels allow photometric accuracy significantly better than the requirement in individual SPHEREx exposures. This PSF reconstruction method is broadly applicable to a variety of problems and combines computationally simple techniques in a way that is robust to complicating factors such as severe undersampling, spatially complex PSFs, noise, crowded fields, or limited source numbers.more » « less
-
ABSTRACT We simulate the scientific performance of the Nancy Grace Roman Space Telescope High Latitude Survey (HLS) on dark energy and modified gravity. The 1.6-yr HLS Reference survey is currently envisioned to image 2000 deg2 in multiple bands to a depth of ∼26.5 in Y, J, H and to cover the same area with slit-less spectroscopy beyond z = 3. The combination of deep, multiband photometry and deep spectroscopy will allow scientists to measure the growth and geometry of the Universe through a variety of cosmological probes (e.g. weak lensing, galaxy clusters, galaxy clustering, BAO, Type Ia supernova) and, equally, it will allow an exquisite control of observational and astrophysical systematic effects. In this paper, we explore multiprobe strategies that can be implemented, given the telescope’s instrument capabilities. We model cosmological probes individually and jointly and account for correlated systematics and statistical uncertainties due to the higher order moments of the density field. We explore different levels of observational systematics for the HLS survey (photo-z and shear calibration) and ultimately run a joint likelihood analysis in N-dim parameter space. We find that the HLS reference survey alone can achieve a standard dark energy FoM of >300 when including all probes. This assumes no information from external data sets, we assume a flat universe however, and includes realistic assumptions for systematics. Our study of the HLS reference survey should be seen as part of a future community-driven effort to simulate and optimize the science return of the Roman Space Telescope.more » « less
-
ABSTRACT We explore synergies between the Nancy Grace Roman Space Telescope and the Vera Rubin Observatory’s Legacy Survey of Space and Time (LSST). Specifically, we consider scenarios where the currently envisioned survey strategy for the Roman Space Telescope’s High Latitude Survey (HLS reference), i.e. 2000 deg2 in four narrow photometric bands is altered in favour of a strategy of rapid coverage of the LSST area (to full LSST depth) in one band. We find that in only five months, a survey in the W-band can cover the full LSST survey area providing high-resolution imaging for >95 per cent of the LSST Year 10 gold galaxy sample. We explore a second, more ambitious scenario where the Roman Space Telescope spends 1.5 yr covering the LSST area. For this second scenario, we quantify the constraining power on dark energy equation-of-state parameters from a joint weak lensing and galaxy clustering analysis. Our survey simulations are based on the Roman Space Telescope exposure-time calculator and redshift distributions from the CANDELS catalogue. Our statistical uncertainties account for higher order correlations of the density field, and we include a wide range of systematic effects, such as uncertainties in shape and redshift measurements, and modelling uncertainties of astrophysical systematics, such as galaxy bias, intrinsic galaxy alignment, and baryonic physics. We find a significant increase in constraining power for the joint LSST + HLS wide survey compared to LSST Y10 (FoMHLSwide = 2.4 FoMLSST) and compared to LSST + HLS (FoMHLSwide = 5.5 FoMHLSref).more » « less
-
Ground-based observatories will discover thousands of transients in the optical, but will not provide the NIR photometry and high-resolution imaging of a space-based observatory. WFIRST can fill this gap. With its SN Ia survey, WFIRST will also discover thousands of other transients in the NIR, revealing the physics for these high-energy events.more » « less
An official website of the United States government

Full Text Available